# class
ES6,class作为对象的模板被引入,通过 class 关键字定义类。
class A {
a=19;
//在浏览器中上述代码没报错,但是用node启动的代码在某些版本会报错
//测试在node v16.14.0是支持的2022/10/07
constructor(){
this.b=100;
console.log(this.a)
}
addnum(){
console.log(this.a+this.b)
}
}
let a=new A()//19
a.addnum()//119
class 的本质是 function ,是语法糖。
DANGER
- 类不可重复声明
- 类定义不会被提升。
- 类中方法不需要 function 关键字。
- 方法间不能加分号。
class a{}
typeof a //"function"
//上面代码表明,类的数据类型就是函数,类本身就指向构造函数。
可以通过name获取类表达式的名称,但是不能在类作用域外访问这个标识符
let Person = class PersonName{
identify(){
console.log(Person.name,PersonName.name)
// PersonName PersonName
}
}
let p = new Person()
p.identify()
console.log(Person.name)//PersonName
console.log(PersonName.name)
//Uncaught ReferenceError: PersonName is not defined at demo.html:21
# 类定义的方法在prototype上
//构造函数的prototype属性,在 ES6 的“类”上面继续存在。
//事实上,类的所有方法都定义在类的prototype属性上面。
class Point {
constructor() {
// ...
}
toString() {
}
}
// 等同于
Point.prototype = {
constructor() {},
toString() {}
};
//由于类的方法都定义在prototype对象上面,所以类的新方法可以添加在prototype对象上面。
//Object.assign方法可以很方便地一次向类添加多个方法。
class Point {
constructor(){
// ...
}
}
Object.assign(Point.prototype, {
toString(){},
toValue(){}
});
//prototype对象的constructor属性,直接指向“类”的本身,这与 ES5 的行为是一致的。
Point.prototype.constructor === Point // true
# 与es5枚举不同
//另外,类的内部所有定义的方法,都是不可枚举的(non-enumerable)。
class Point {
constructor(x, y) {
// ...
}
toString() {
// ...
}
}
Object.keys(Point.prototype)
// []
Object.getOwnPropertyNames(Point.prototype)
// ["constructor","toString"]
//上面代码中,toString方法是Point类内部定义的方法,它是不可枚举的。这一点与 ES5 的行为不一致。
var Point = function (x, y) {
// ...
};
Point.prototype.toString = function() {
// ...
};
Object.keys(Point.prototype)
// ["toString"]
Object.getOwnPropertyNames(Point.prototype)
// ["constructor","toString"]
//上面代码采用 ES5 的写法,toString方法就是可枚举的。
# class constructor方法
//constructor方法是类的默认方法,通过new命令生成对象实例时,自动调用该方法。
//一个类必须有constructor方法,如果没有显式定义,一个空的constructor方法会被默认添加。
class Point {
}
// 等同于
class Point {
constructor() {}
}
//constructor方法默认返回实例对象(即this),完全可以指定返回另外一个对象。
class Foo {
constructor() {
return Object.create(null);
}
}
new Foo() instanceof Foo
// false
上面代码中,constructor函数返回一个全新的对象,结果导致实例对象不是Foo类的实例。
类必须使用 new 调用,否则会报错。这是它跟普通构造函数的一个主要区别,后者不用new也可以执行。
Foo()
// TypeError: Class constructor Foo cannot be invoked without 'new'
类本身具有构造函数一样的行为,所以p1的构造函数是直接指向Person而不是Person的构造函数;但是p2调用的是Person的构造函数,所以指向Person.constructor
class Person {}
let p1 = new Person();
console.log(p1.constructor === Person); // true
console.log(p1 instanceof Person); // true
console.log(p1 instanceof Person.constructor); // false
let p2 = new Person.constructor();
console.log(p2.constructor === Person); // false
console.log(p2 instanceof Person); // false
console.log(p2 instanceof Person.constructor); // true
# 类的实例
与 ES5 一样,实例的属性除非显式定义在其本身(即定义在this对象上),否则都是定义在原型上(即定义在class上)。
//定义类
class Point {
constructor(x, y) {
this.x = x;
this.y = y;
}
toString() {
return '(' + this.x + ', ' + this.y + ')';
}
}
var point = new Point(2, 3);
point.toString() // (2, 3)
point.hasOwnProperty('x') // true
point.hasOwnProperty('y') // true
point.hasOwnProperty('toString') // false
point.__proto__.hasOwnProperty('toString') // true
上面代码中,x和y都是实例对象point自身的属性(因为定义在this变量上),所以hasOwnProperty方法返回true,而toString是原型对象的属性(因为定义在Point类上),所以hasOwnProperty方法返回false。这些都与 ES5 的行为保持一致。
与 ES5 一样, 类的所有实例共享一个原型对象。
var p1 = new Point(2,3);
var p2 = new Point(3,2);
p1.__proto__ === p2.__proto__
//true
这也意味着,可以通过实例的__proto__属性为“类”添加方法。
DANGER
__proto__并非语言本身特性,是厂商具体实现时添加的私有属性,虽然很多浏览器 JS 引擎中提供了这个私有属性,但不建议生产中使用该属性。我们可以使用 Object.getPrototypeOf 方法来获取实例对象的原型,然后再来为原型添加方法/属性。
var p1 = new Point(2,3);
var p2 = new Point(3,2);
p1.__proto__.printName = function () { return 'Oops' };
//Object.getPrototypeOf(p1).printName=function(){console.log(222)}
p1.printName() // "Oops"
p2.printName() // "Oops"
var p3 = new Point(4,2);
p3.printName() // "Oops"
代码在p1的原型上添加了一个printName方法,由于p1的原型就是p2的原型,因此p2也可以调用这个方法。新建的实例p3也可以调用这个方法。使用实例的__proto__属性改写原型,必须相当谨慎,不推荐使用,因为这会改变“类”的原始定义,影响到所有实例。
- 默认情况下,类构造函数会在执行后返回this对象。如果没有什么引用这个对象,那么这个对象会被销毁。
不过如果返回的不是this对象,那么这个对象不会通过instanceof检测出和类的关联。
class Person {
constructor(override) {
this.foo = 'foo';
if (override) {
return {
bar: 'bar'
};
}
}
}
let p1 = new Person(),
p2 = new Person(true);
console.log(p1); // Person{ foo: 'foo' }
console.log(p1 instanceof Person); // true
console.log(p2); // { bar: 'bar' }
console.log(p2 instanceof Person); // false
# 取值函数(getter)和存值函数(setter)[属性的读与写]
与 ES5 一样,在“类”的内部可以使用get和set关键字,对某个属性设置存值函数和取值函数,拦截该属性的存取行为。
let _age = 4
class Animal {
constructor (type) {
this.type = type
}
get age () {
return _age
}
set age (val) {
if (val < 7 && val > 4) {
_age = val
}
}
eat () {
console.log('i am eat food')
}
}
let dog = new Animal('dog')
console.log(dog.age)//4
dog.age = 8
console.log(dog.age)//4
console.log(dog._age)//undefined
dog.age=5;
console.log(dog.age)//5
class MyClass {
constructor() {
// ...
}
get prop() {
return 'getter';
}
set prop(value) {
console.log('setter: '+value);
}
}
let inst = new MyClass();
inst.prop = 123;
// setter: 123
inst.prop
// 'getter'
上面代码中,prop属性有对应的存值函数和取值函数,因此赋值和读取行为都被自定义了。
function Person(age) {
Object.defineProperty(this, "age", {
get: function () {return age },
set: function (value) { age = value+1000; }
});
}
let person =new Person()
person.age=1000
console.log(person.age)
var age = 18;
var test = {
get age (){
return age;
},
set age (value){
if(value > 100) age= new Date().getFullYear() - value;
else age = value;
}
};
存值函数和取值函数是设置在属性的 Descriptor 对象上的。
class CustomHTMLElement {
constructor(element) {
this.element = element;
}
get html() {
return this.element.innerHTML;
}
set html(value) {
this.element.innerHTML = value;
}
}
var descriptor = Object.getOwnPropertyDescriptor(
CustomHTMLElement.prototype, "html"
);
"get" in descriptor // true
"set" in descriptor // true
上面代码中,存值函数和取值函数是定义在html属性的描述对象上面,这与 ES5 完全一致。
# 属性表达式
类的属性名,可以采用表达式。
let methodName = 'getArea';
class Square {
constructor(length) {
// ...
}
[methodName]() {
// ...
}
}
上面代码中,Square类的方法名getArea,是从表达式得到的。
# Class 表达式
与函数一样,类也可以使用表达式的形式定义。
const MyClass = class Me {
getClassName() {
return Me.name;
}
};
上面代码使用表达式定义了一个类。需要注意的是,这个类的名字是Me,但是Me只在 Class 的内部可用,指代当前类。在 Class 外部,这个类只能用MyClass引用。
let inst = new MyClass();
inst.getClassName() // Me
Me.name // ReferenceError: Me is not defined
//上面代码表示,Me只在 Class 内部有定义。
如果类的内部没用到的话,可以省略Me,也就是可以写成下面的形式。
const MyClass = class { /* ... */ };
采用 Class 表达式,可以写出立即执行的 Class。
let person = new class {
constructor(name) {
this.name = name;
}
sayName() {
console.log(this.name);
}
}('张三');
person.sayName(); // "张三"
上面代码中,person是一个立即执行的类的实例。
提示
name 属性
- ES6 的类只是 ES5 的构造函数的一层包装,所以函数的许多特性都被Class继承,包括name属性。
class Point {}
Point.name // "Point"
name属性总是返回紧跟在class关键字后面的类名。
- this 的指向
类的方法内部如果含有this,它默认指向类的实例。但是,必须非常小心,一旦单独使用该方法,很可能报错。
class Logger {
printName(name = 'there') {
this.print(`Hello ${name}`);
}
print(text) {
console.log(text);
}
}
const logger = new Logger();
const { printName } = logger;
printName(); // TypeError: Cannot read property 'print' of undefined
上面代码中,printName方法中的this,默认指向Logger类的实例。但是,如果将这个方法提取出来单独使用,this会指向该方法运行时所在的环境(由于 class 内部是严格模式,所以 this 实际指向的是undefined),从而导致找不到print方法而报错。
一个比较简单的解决方法是,在构造方法中绑定this,这样就不会找不到print方法了。
class Logger {
constructor() {
this.printName = this.printName.bind(this);
}
// ...
}
另一种解决方法是使用箭头函数。
class Obj {
constructor() {
this.getThis = () => this;
}
}
const myObj = new Obj();
myObj.getThis() === myObj // true
箭头函数内部的this总是指向定义时所在的对象。上面代码中,箭头函数位于构造函数内部,它的定义生效的时候,是在构造函数执行的时候。这时,箭头函数所在的运行环境,肯定是实例对象,所以this会总是指向实例对象。
还有一种解决方法是使用Proxy,获取方法的时候,自动绑定this。
function selfish (target) {
const cache = new WeakMap();
const handler = {
get (target, key) {
const value = Reflect.get(target, key);
if (typeof value !== 'function') {
return value;
}
if (!cache.has(value)) {
cache.set(value, value.bind(target));
}
return cache.get(value);
}
};
const proxy = new Proxy(target, handler);
return proxy;
}
const logger = selfish(new Logger());
# 类的访问器方法
var names = ["abc", "cba", "nba"]
class Person {
constructor(name, age) {
this.name = name
this.age = age
this._address = "广州市"
}
// 普通的实例方法
// 创建出来的对象进行访问
// var p = new Person()
// p.eating()
eating() {
console.log(this.name + " eating~")
}
running() {
console.log(this.name + " running~")
}
// 类的访问器方法
get address() {
console.log("拦截访问操作")
return this._address
}
set address(newAddress) {
console.log("拦截设置操作")
this._address = newAddress
}
// 类的静态方法(类方法)
// Person.createPerson()
static randomPerson() {
var nameIndex = Math.floor(Math.random() * names.length)
var name = names[nameIndex]
var age = Math.floor(Math.random() * 100)
return new Person(name, age)
}
}
var p = new Person("why", 18)
p.eating()
p.running()
console.log(p.address)
p.address = "北京市"
console.log(p.address)
// console.log(Object.getOwnPropertyDescriptors(Person.prototype))
for (var i = 0; i < 50; i++) {
console.log(Person.randomPerson())
}
# 静态方法
它不属于实例,而是属于这个类的方法!
类相当于实例的原型,所有在类中定义的方法,都会被实例继承。如果在一个方法前,加上static关键字,就表示该方法不会被实例继承,而是直接通过类来调用,这就称为“静态方法”。
class Foo {
static classMethod() {
return 'hello';
}
}
Foo.classMethod() // 'hello'
var foo = new Foo();
foo.classMethod()
// TypeError: foo.classMethod is not a function
上面代码中,Foo类的classMethod方法前有static关键字,表明该方法是一个静态方法,可以直接在Foo类上调用(Foo.classMethod()),而不是在Foo类的实例上调用。如果在实例上调用静态方法,会抛出一个错误,表示不存在该方法。
如果静态方法包含this关键字,这个this指的是类,而不是实例。
class Foo {
static bar() {
this.baz();
}
static baz() {
console.log('hello');
}
baz() {
console.log('world');
}
}
Foo.bar() // hello
静态方法可以与非静态方法重名。
父类的静态方法,可以被子类继承。
class Foo {
static classMethod() {
return 'hello';
}
}
class Bar extends Foo {
}
Bar.classMethod() // 'hello'
上面代码中,父类Foo有一个静态方法,子类Bar可以调用这个方法。
class Person {
constructor() {
// Everything added to 'this' will exist on each individual instance
this.locate = () => console.log('instance', this);
}
// Defined on the class prototype object
locate() {
console.log('prototype', this);
}
// Defined on the class
static locate() {
console.log('class', this);
}
}
let p = new Person();
p.locate(); // instance, Person {}
Person.prototype.locate(); // prototype, {constructor: ... }
Person.locate(); // class, class Person {}
静态方法也是可以从super对象上调用的。
class Foo {
static classMethod() {
return 'hello';
}
}
class Bar extends Foo {
static classMethod() {
return super.classMethod() + ', too';
}
}
Bar.classMethod() // "hello, too"
类的静态方法,在不需要实例的传值时使用适合,而实例方法一般会需要实例提供的值。
# 实例属性的新写法
实例属性除了定义在constructor()方法里面的this上面,也可以定义在类的最顶层。
class IncreasingCounter {
constructor() {
this._count = 0;
}
get value() {
console.log('Getting the current value!');
return this._count;
}
increment() {
this._count++;
}
}
上面代码中,实例属性this._count定义在constructor()方法里面。另一种写法是,这个属性也可以定义在类的最顶层,其他都不变。
class IncreasingCounter {
_count = 0;
get value() {
console.log('Getting the current value!');
return this._count;
}
increment() {
this._count++;
}
}
上面代码中,实例属性_count与取值函数value()和increment()方法,处于同一个层级。这时,不需要在实例属性前面加上this。
这种写法的好处,所有实例对象自身的属性都定义在类的头部,看上去比较整齐,一眼就能看出这个类有哪些实例属性。
class foo {
bar = 'hello';
baz = 'world';
constructor() {
// ...
}
}
上面的代码,一眼就能看出,foo类有两个实例属性,一目了然。另外,写起来也比较简洁。
# 静态属性
静态属性指的是 Class 本身的属性,即Class.propName,而不是定义在实例对象(this)上的属性。
class Foo {
}
Foo.prop = 1;
Foo.prop // 1
上面的写法为Foo类定义了一个静态属性prop。
目前,只有这种写法可行,因为 ES6 明确规定,Class 内部只有静态方法,没有静态属性。现在有一个提案提供了类的静态属性,写法是在实例属性法的前面,加上static关键字。
class MyClass {
static myStaticProp = 42;
constructor() {
console.log(MyClass.myStaticProp); // 42
}
}
这个新写法大大方便了静态属性的表达。新写法是显式声明(declarative),而不是赋值处理,语义更好。
# 私有方法和私有属性
私有方法和私有属性,是只能在类的内部访问的方法和属性,外部不能访问。这是常见需求,有利于代码的封装,但 ES6 不提供,只能通过变通方法模拟实现。
一种做法是在命名上加以区别。
class Widget {
// 公有方法
foo (baz) {
this._bar(baz);
}
// 私有方法
_bar(baz) {
return this.snaf = baz;
}
// ...
}
上面代码中,_bar方法前面的下划线,表示这是一个只限于内部使用的私有方法。但是,这种命名是不保险的,在类的外部,还是可以调用到这个方法。
另一种方法就是索性将私有方法移出模块,因为模块内部的所有方法都是对外可见的。
class Widget {
foo (baz) {
bar.call(this, baz);
}
// ...
}
function bar(baz) {
return this.snaf = baz;
}
目前,有一个提案,为class加了私有属性。方法是在属性名之前,使用#表示。
# 非函数原型和类成员
类定义不显式支持在原型和类上添加成员数据,但是在类外部可以手动添加:
class Person {
sayName() {
console.log(`${Person.greeting} ${this.name}`);
}
}
// Define data member on class
Person.greeting = 'My name is';
// Define data member on prototype
Person.prototype.name = 'Jake';
let p = new Person();
p.sayName(); // My name is Jake
es6的类遵循严格模式,如果不是类的实例自己去调用类的方法,那么因为默认的this是指向window,但是在严格模式下是undefined,所以需要人工手动绑定
class A{
constructor(action) {
this.val=10
// this.fun =this.fun.bind(this)
action(this.fun.bind(this))
}
fun(){
console.log(this)
console.log(this.val)
}
}
const a=new A((fun)=>{
fun()
})
// a.fun()
# babel转化
class Person {
constructor(name, age) {
this.name = name
this.age = age
}
eating() {
console.log(this.name + " eating~")
}
}
// babel转换
"use strict";
function _classCallCheck(instance, Constructor) {
if (!(instance instanceof Constructor)) {
throw new TypeError("Cannot call a class as a function");
}
}
function _defineProperties(target, props) {
for (var i = 0; i < props.length; i++) {
var descriptor = props[i];
descriptor.enumerable = descriptor.enumerable || false;
descriptor.configurable = true;
if ("value" in descriptor) descriptor.writable = true;
Object.defineProperty(target, descriptor.key, descriptor);
}
}
function _createClass(Constructor, protoProps, staticProps) {
if (protoProps) _defineProperties(Constructor.prototype, protoProps);
if (staticProps) _defineProperties(Constructor, staticProps);
return Constructor;
}
// /*#__PURE__*/ 纯函数
// webpack 压缩 tree-shaking
// 这个函数没副作用
var Person = /*#__PURE__*/ (function () {
function Person(name, age) {
this.name = name;
this.age = age;
}
_createClass(Person, [
{
key: "eating",
value: function eating() {
console.log(this.name + " eating~");
}
}
]);
return Person;
})();